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Abstract

We present a theory of endogenous policy preferences and electoral competition with

boundedly rational voters who find it costly to process detailed information. Voters

are otherwise fully rational, and they strategically choose how much memory to devote

to processing political information. We find that even if all voters start with a common

prior such that they all prefer a moderate policy over extreme alternatives to the left

or the right, and even if voters observe only common signals that in the limit would

assure a perfectly rational agent that the moderate policy is indeed best for everyone,

a majority of voters eventually become extreme and the electorate becomes polarized:

some voters support the left policy, and some support the right policy. Two fully

rational parties respond by proposing extreme platforms, and thereafter, the policy

outcome in every period is extreme.
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1 Introduction

We study how voters’ cost of processing political information relates to the polarization

of the electorate. We find conditions under which voters who would embrace a policy

consensus if they were fully informed or fully uninformed, polarize into two opposed

extremes due to the constrained optimal way in which they process common infor-

mation. To explain this phenomenon, we microfound voters’ behavior with explicit

formulations of voters’ motives to vote and the information-processing costs they bear.

Consider an electorate facing a set of different policies, and a list of candidates run-

ning for office. Voters have preferences over certain socio-economic outcomes (their

individual wealth, society’s wealth and inequality, pollution, etc.) as a primitive.

Whereas, a voter’s preferences over policies are endogenously derived from the voter’s

preferences over outcomes, and from her information about how each policy would

affect the outcomes over which her primitive preferences are defined.

Given their endogenous preferences over policies, voters derive their preferences

over their voting alternatives (i.e. over each candidate in the ballot, and abstention)

by combining an outcome-oriented motivation with an “expressive” motivation. The

outcome-oriented motivation depends on the effect of their vote on society’s policy

choice; in a large election, this motivation vanishes as the probability that an individual

vote has any effect becomes negligible (Ledyard 1984). The expressive motivation to

vote for a given candidate is that voters enjoy supporting good causes: by supporting a

cause or a party, a voter becomes a supporter of this party or cause (Schuessler 2000),

and voters enjoy identifying as members of a group that champions good policies.1

If a voter’s reason to vote is that she enjoys supporting good policies, in order to

vote for a candidate, the voter needs to believe that the policies that this candidate

would implement are good.2 Since voters are uncertain about the effect of policies over

downstream socio-economic outcomes, they need to process information to determine

1“Prosperity has many parents; adversity only one” (Tacitus 2014 [94 AD], page 53, in the original
language: “Prospera omnes sibi vindicant; adversa uni imputatur”).

2This motivation to vote contingent on “getting it right” is unlike, say, an intrinsic motivation to
vote regardless of who or what one votes for (Riker and Ordershook 1968) or the motivation to vote
for a candidate whose identity is exogenously given as part of the voter’s type (Coate and Conlin
2004; Feddersen and Sandroni 2005).
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which are the best policies, and thus which candidates (if any) are worth supporting

by voting for them.

In the information age, voters are flooded with information, freely available across

multiple media platforms. If processing information were costless, a rational voter

would use all this freely available information and Bayes rule to formulate a precise

posterior belief about the mapping from policies to the outcomes of interest, and she

would vote to maximize her expected utility according to that posterior belief. Alas,

processing information is costly. Voters need to weigh this cost against the benefit of

being better informed (Downs 1957; Davis, Hinich and Ordeshook 1970). Strategic

voters exposed to an over-abundance of political news, and with limited capacity to

correctly process and store all this information need a simpler, (constrained) optimal

rule to determine how to process information, which important pieces of information

to keep in mind, and which ones to discard and to forget about.

We construct a theory of political participation under the following two premises.

First, voters enjoy supporting a policy in proportion to their expected utility if this

policy were implemented. Further, each voter enjoys voting for candidates who support

the policy the voter thinks is best for her, while she dislikes voting for candidates who

support policies that are very different from the one she thinks best. These expressive

preferences over voters’ own actions may be weighed arbitrarily little relative to the

weight on standard preferences over outcomes, but as long as their importance is not

zero, they will influence voters’ behavior. Second, voters decide how much cost to

incur assimilating and processing political information by weighing how much this

information helps them determine which policy is best for them, against the difficulty

of processing this information.

We relax the assumption of perfect information processing, and assume instead

that it is costly for voters to keep track of precise details about the information they

have observed. We formalize this cost of processing information by assuming that

voters have a limited set of “memory states” that aggregate past information. A

fully rational agent would be one with unlimited memory states, who can record any

minutely different history of informative signals (or any sufficient statistic such as a

posterior belief recorded to any degree of precision) into its own memory state. A

more realistic voter finds each additional memory state costly, so she resorts to a
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limited memory capacity with only finitely many different memory states, to deal with

all the information. This voter must lump sufficiently similar information histories

into the same memory state, resulting on a blurred belief about the state of affairs.

Voters trade off this cost of processing information, with the benefit of a more precise

understanding about how alternative policies would affect outcomes of interest, and

thus deriving more satisfaction from supporting the alternative they think would have

the best effect.

We model this endogenously imperfect way to process information using finite au-

tomata, as in Wilson (2014). An automaton consists of a collection of finitely many

memory states, and a transition rule taking the process from a given memory state

to another depending on the information received in that period. Limited memory

capacity implies that agents’ beliefs are categorized discretely instead of being rep-

resented by arbitrarily precise posteriors. This departs from the rational inattention

literature (Maćkowiak, Matějka and Wiederholt 2021), because, under rational inat-

tention, agents strategically choose which information to attend to, and then update in

a fully rational way with a precise posterior belief. In contrast, under our formulation

agents strategically choose their memory capacity and, constrained by this capacity,

they choose how best to process all the information they observe.

Given the number of memory states an agent chooses, each memory state represents

the agent’s state of mind or her set of thoughts about the uncertain state of the world

relevant for her voting behavior. Each memory state corresponds to a category of

partial histories and a qualitative “belief”. This categorization is analogous to the one

made by an agent who evaluates sovereign default risk solely based on credit ratings

“A”, “B”, “C”, etc., and who then forgets all the detailed information that fed into

the rating, including all information that make some countries rated “B” less likely to

default than others with the same rating. A distinct feature of this updating process

is the discreteness in information processing; there is no “straw that breaks the camel’s

back” because sufficiently small bits of information do not induce a sufficient update to

change from one memory state to another, and are thereafter forgotten; rather, it takes

quite a substantial bit of information to trigger a transition across memory states.

Agents who use different updating processes may process the same news very dif-

ferently. To avoid infinite costs, each agent will choose only a finite number of distinct
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memory states, accommodating only finitely many different views of the world. A

voter’s optimal number of memory states and the optimal rule to transition across

memory states are determined endogenously by her preference, the informational en-

vironment, and the cost structure. We assume homogeneous costs of memory across

voters but we allow some minimal heterogeneity in preferences, and this heterogeneity

generates endogenously the difference in the constrained optimal updating processes.

We consider the following environment. There is a set of three policies: a moderate

policy and two extreme ones, one on each side (left and right) of the ideological divide.

Each policy matches one state of the world, and is Pareto superior to the other two

in that state: every voter strictly prefers the socio-economic outcome if the state-

matching policy is implemented than the outcome if any other policy is implemented.

Signals that the state is “moderate” (which we take it to be the normal, expected

state) are abundant in every state and hence are commonplace (say a day with no

news headlines about street violence), while the signals that shift preferences toward

extreme policies (say a shocking case of either coordinated police violence against

peaceful demonstrators, or of coordinated violence by armed rioters against peaceful

bystanders and police) will make big news as they are rare but very informative.

Our main result is that in this environment, sufficiently impatient voters with costly

memory capacity polarize once they observe an extreme signal. Even if all voters start

with a common prior about the state of the world and under this prior all voters

prefer the moderate policy, even if voters only observe common signals, and even if

these common signals are such that any voter who processed information perfectly

would formulate a posterior that the moderate policy is indeed best for everyone, given

their limited memory capacity, a majority of voters end up favoring extreme policy

alternatives, and diverging in their preferences: some prefer the left policy and others

prefer the right policy. Chasing these extreme voters, two office-motivated parties offer

extreme policy proposals, and the implemented policy becomes extreme.

The underlying mechanism that explains our result is that after seeing any big news

that suggest an extreme state of the world, voters ignore any subsequent moderate

signal. This uneven updating process, in which commonplace moderate signals are

ignored while rare extreme ones are heeded, drive voters away toward the political

extremes. Even under common signals and with a common prior, voters polarize at
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opposite extremes. Why? Say the common prior is a belief that the state is likely

“normal”, and that all voters prefer a “moderate” policy given this prior belief. Once

voters commonly observe a signal that suggests the state of the world is extraordinary

(which is rare but will happen eventually), all voters agree that the state is indeed more

likely to be an extraordinary one that calls for an extreme policy solution. Having

concluded that a moderate policy would be unsuitable, voters disagree about which

extreme policy is appropriate: some support left policies, while others support right

policies. The policy disagreement stems from the heterogeneity in the relative distaste

over policy mistakes in one or the other direction under an extreme state of nature.

In this theory, polarization is micro-founded by the individual decisions of each voter

to simplify her information environment, by coarsening the partition of possible beliefs

under consideration. Polarization is an aggregate phenomenon that can be decomposed

as a large number of independent (and disparate) decisions to become extreme made

by each individual voter in isolation. According to our theory, polarization is not elite-

driven, and it is not driven by the electorate’s network interactions, nor by biased media

that reinforces the beliefs of like-minded voters in their own informational bubble.

Rather, we show that a large society of Robinson Crusoes, each isolated on their own

island, all endowed with a common prior at the time of arrival to their own island, and

observing common signals in the night sky each night, would also polarize. Our theory

thus provides an account for episodes of ground-up political polarization like the one

experienced in the United States after 2009 (Skocpol and Tervor 2019).

We next discuss the related literature. Thereafter, in Section 2 we present a model

on information processing and preference formation for impatient voters who face mem-

ory costs; in Section 3 we show how an electorate composed of such voters polarizes;

and in Section 4 we show that party platforms and implemented policies are extreme in

any equilibrium of a stylized electoral competition theory. We discuss our theoretical

results in light of new empirical evidence on polarization in Section 5. The main steps

of the proofs are in Section 6, with details in the (Online) Appendix.
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Related Literature

Our model of learning with finite automata follows the approach in Cover and Hellman

(1970) and Wilson (2014).3 Our results contribute to this literature on three fronts.

First, while the literature focus on only two states of nature, our model features three

with moderation as the status quo and two well-defined extreme states. Polarization

means two sets of people moving toward the two extreme states. On the technical front,

we also employ completely different techniques to handle three-states as the belief-

space is no longer one-dimensional. Second, while Wilson (2014) also obtains belief

polarization of agents with different priors, we obtain polarization by heterogeneity in

preferences. Moreover, Wilson (2014) only shows that it is possible to have divergent

beliefs for some signal realization. In our model, we show that under all states of nature

and almost all signal realizations, polarization inevitably happens and persists. Finally,

the literature typically assumes an exogenously given number of memory states, and

we endogenize it by introducing a cost.

Our modeling of how voters process information also relates in its motivation and

substance to theories of rationally inattentive voters (Prato and Wolton 2016; Matějka

and Tabellini 2021). In these models of rational inattention, typically voters can choose

from a menu of signals for which more informative ones are more costly. However,

agents have perfect abilities to process signals obtained and update them according

the Bayes rule. In our model all signals are commonly observed, and the differences

arise in what voters do with the signals by introducing costly information processing.

In contrast to the rational-inattention models, the constrained optimal rule in our

model features a categorization of beliefs according to which small signals, although

free to obtain, do not change the voter’s state-of-the-mind, a feature that drives our

extremism and polarization result.

Our theoretical finding that voters’ costs of processing information leads to pref-

erences for extremism contributes to a literature documenting political polarization

(Abramowitz and Saunders 2008; McCarty, Poole and Rosenthal 2016; Gentzkow 2016),

studying its consequences (Gordon and Landa 2017; Buisseret and van Weelden 2022),

3The automata approach to model imperfect processing of information has been recently evaluated
by Oprea (2020), and is supported by experimental evidence in Banovetz and Oprea (2023).
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suggesting ways to mitigate it (Axelrod, Daymude and Forrest 2021), or explaining

some of its causes. Among the latter, Glaeser, Ponzetto and Shapiro (2005); Serra

(2010); Bol, Matakos, Troumpounis and Xefteris (2018); Tolvanen, Tremewan and

Wagner (2021); and McMurray (2022) focus on candidates’ polarization. With regard

to voter polarization, it can be triggered by economic growth if contentious moral is-

sues gain salience once basic economic needs are met (Enke, Polborn and Wu 2022);

or it can arise if voters choose to follow different sources of information (Nimark and

Sundaresan 2019; Che and Mierendorff 2019; Perego and Yuksel 2022); or if they

remain uninformed and vote to cancel each other out (Ely 2023); or if they pay dis-

proportionate attention to the issues they care more about (Yuksel, 2022) or to the

issues in which the candidates’ proposals differ most (Nunnari and Zapal 2020); if they

share news with their connections (Bowen, Dmitriev and Galperti 2023); or, even un-

der commonly-observed signals, if voters face ambiguity and are averse to it (Baliga,

Hanany and Klibanoff 2013).

Perhaps closest to our work in their linking of voters’ memory constraints to polar-

ization are two theories in which voters observe common information, but they process

it in a boundedly rational way that leads to polarization. Fryer, Harms and Jackson

(2019) assume that voters coarsen the space of signals about the state of the world.

In their model, voters reinterpret each uninformative signal as an informative one that

conforms with their prior. Voters then update this prior as if the signal had been

truly informative; this self-confirming miss-processing of signals, together with hetero-

geneous priors, leads to polarization. In fact, if some signals are equivocal rather than

uninformative, upon observing equivocal signals, fully rational agents with different

priors about the meaning of equivocal signals also polarize toward their priors (Benoit

and Dubra 2019). In either case, if agents shared a common prior, they would not

polarize.

Levy and Razin (2021), like us, present a dynamic theory of electoral competition

and polarization with two parties and three possible policies (a moderate one, and an

extreme one to each side), in which the driver of polarization is voters’ limited temporal

memory: voters remember all information for a fixed time, and after this lapse of

time they forget. Polarization is candidate-driven, as in Wittman (1983) or Calvert

(1985), with cycles of platform polarization and convergence. Meanwhile, voters’ beliefs
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never polarize, as all voters share commonly updated beliefs. In contrast, our voters’

memory constraint is one of capacity, like computers’ memories, and we complement

their account with a theory of voter polarization.

2 The Model

Consider a large democratic society, represented by a set I of voters, with unit mass.

The voters are faced with a choice over three policy alternatives in each of infinitely

many periods. Let A ≡ {aL, aM , aR} denote the set of alternatives, where aL denotes

a “left” alternative, aM a “moderate alternative”, and aR a “right” alternative. Let

Θ ≡ {L,M,R} denote the set of possible states of the world (where L, M , and R again

respectively denote Left, Moderate, and Right), and let θ ∈ Θ denote a state of the

world. All voters share a common prior probability distribution P0 over Θ about the

state of the world. We envision an environment in which the moderate state M is the

most likely, and states L or R represent an extraordinary event or shock. Formally, we

assume that the common prior among the agents is such that

P0(L) = P0(R) = p0 <
1

4
. (1)

In each period t = 0, 1, 2, ..., each voter i chooses which policy alternative to support.

Let ait ∈ A denote the alternative that voter i supports in period t (more generally we

denote individual agent labels as superscripts, and period labels as subscripts). Let

aIt ∈ A denote the policy alternative collectively chosen by society in period t; in a

direct democracy (Section 3), the collective choice aIt is the alternative supported by

the largest subset of agents; in a representative democracy (Section 4) the collective

choice aIt is made by the party that wins a competitive election.

Each voter i cares about the policy outcome aIt and about the policy ait that she

supports, in each period. Let λ ∈ (0, 1) denote the relative weight assigned to the

policy outcome, and 1 − λ the weight assigned to the expressive component of her

political preferences, so that in each period t, each voter i derives instantaneous utility

λu(aIt , θ, b
i) + (1− λ)u(ait, θ, b

i), (2)
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where bi is voter i’s type as described below.4 We assume that voters’ intertemporal

patience is captured by a discount factor δ ∈ (0, 1) across periods, so that the total

utility for voter i for an infinite sequence of individual and collective choices is

λ
∞∑
t=0

(δ)tu(aIt , θ, b
i) + (1− λ)

∞∑
t=0

(δ)tu(ait, θ, b
i), (3)

where the first term is the utility from the sequence of policy outcomes, and the second

term is the expressive utility from the sequence of individual choices to express support

for an alternative.

We assume that in each state θ ∈ Θ, every voter derives highest period utility from

the policy alternative aθ that matches the state, so we refer to alternative aθ as the

“correct” alternative in state θ. Each cell in the left matrix in Table 1 shows the utility

function u(a, θ, bi) as a function of the action a in each column, and of the state of

the world θ in each row, and type bi ∈ [−b̄, b̄] for each voter i, where c ∈ [0, 1] and

b̄ ∈ (−1, 1). The correct policies are on the diagonal of the matrix. For each given

state, utilities are single-peaked with respect to the standard left-to-right order, and,

given Assumption (1) on the prior, states Left and Right are ex-ante much less likely

than the Moderate state. We thus refer to policy alternatives aL and aR, and to states

L and R as “extreme.”

Preference parameter c ∈ [0, 1] captures the disutility of choosing the wrong extreme

action in any extreme state, relative to the utility (normalized to zero) of choosing

moderation in that same extreme state. It is therefore a convexity parameter of the

preferences over the left-to-right order under any given extreme state. We interpret

c as a societal “taste for compromise”: if c is high, under a mixed belief about the

extreme states, moderation is relatively more appealing than if c is low.

We assume that the distribution over voter types has full support over [−b̄, b̄]. Sub-

ject to a Moderate state of the world, voters have common-value symmetric preferences

over policies, with ideal alternative aM . Voters also have a common preference order

over alternatives in either of the two extreme states of the world, and they all agree

4For an overview of citizen’s motivations for voting, see Brennan and Lomasky (1993) or a survey
by Hamlin and Jennings (2018); and Glazer (1987) for an early theory of elections under expressive
voting.
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θ\a aL aM aR

L 1− bi 0 −c
M 0 1 0
R −c 0 1 + bi

θ\s ℓ m r
L µ− ϵ 1− µ ϵ
M ϵ 1− 2ϵ ϵ
R ϵ 1− µ µ− ϵ

Table 1: Left: payoff matrix; right: signal structure

that alternative aM is ex-ante the best given their common prior P0.

Type bi captures the following asymmetry, or lean on voter i’s preferences over

policy alternatives: voters vary on how much they gain from the correct extreme al-

ternative in each extreme state. We say that a voter “leans left” if she has a stronger

preference for the left action in the Left state, than for the right action in the Right

state; and that she “leans right” if she has a stronger preference for the right action in

the Right state, than for the left action in the Left state. Type bi is then a measure of

this lean, with bi < 0 implying that voter i leans left, and bi > 0 that she leans right.

But such leanings only relate to preferences if the state of the world is extreme.

The state of the world, however, is not observable. In period 0 voters rely on the

prior to make their decisions, and in each period t ≥ 1, voters observe a common signal

st drawn from the set S ≡ {ℓ,m, r} independently in each period before making their

choices. Conditional on the state of the world θ ∈ {L,M,R}, signal s ∈ {ℓ,m, r}
is drawn with probability µθ

s. Each cell of the right matrix in Table 1 denotes this

probability µθ
s, as a function of the state θ in each row and the signal s in each column,

with µ ∈ (0, 1) and ϵ ∈ (0, µ/2).

In each period t ≥ 1, all voters observe the common signal st, and each voter

chooses a policy alternative to support (once we introduce an election game in Section

4, we will expand this timeline to let voters also observe the platforms chosen by

political parties). For any voter i ∈ I, her choice of an alternative in period t can

in principle depend on all relevant past information observed by the voter, which is

the sequence (s1, ..., st) ∈ (S)t of common signals up to period t, and the sequence

(ai0, ..., a
i
t−1) ∈ (A)t of voter i’s own actions up to period t− 1.

A decision rule for agent i is a function Di :
⋃∞

t=0(S×A)t → A, where Di(S×A)0 =

Di(∅) denotes the action taken by voter i in period 0, with no information besides the

common prior P0. The decision rule maps each possible sequence of signals and own
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actions observed by agent i to the set of alternatives. Since all agents observe the

same sequence of signals and this sequence is the only source of information about the

state of the world θ, with perfect Bayesian updating, all agents would share the same

posterior belief about θ, and this posterior belief, updated in each period according to

the latest realization of the common signal, would be the only relevant state variable.

The unconstrained optimal rule for each agent can be fully characterized by the agent’s

type bi and by the posterior, p over Θ: for each voter i, the optimal decision rule is to

choose alternative a that maximizes
∑

θ∈Θ p(θ)u(a, θ, bi). We use ∆(Θ) to denote the

set of posteriors.

Finite automata and implementation

Storing and remembering precise, detailed information is costly for voters. Boundedly

rational voters that optimize their choices must take into account this cost in making

their decisions. In order for the unconstrained rule described above to be optimal,

processing information to compute a precise posterior belief must be costless. Rational

agents for which information processing is costly—and these include any voter in any

real-world application—will seek to find a constrained optimal rule that is less costly to

use. We assume that our agents summarize all observed information using finitely many

“memory states,” and update their memory only using the most relevant information,

namely, the commonly observed signal. More precisely, we formulate this process as a

finite automaton, to be described below.

A stochastic finite-state automaton (SFSA) is a list ⟨Q, q0, τ, d⟩, where Q is

a finite set of memory states ; q0 ∈ Q is the initial memory state; τ : Q × S → ∆(Q)

is the transition rule; and d : Q → ∆(A) is the decision rule. Each memory state

q ∈ Q can be interpreted as a state of mind; the transition rule τ then specifies how

observing a signal s ∈ S triggers a (probabilistic) change in such state of mind; and

the decision rule d specifies a probabilistic choice of alternative for each state of mind

or, in our jargon, for each “memory state.” Using results from Kalai and Solan (2004),

with no loss of generality we can restrict attention to deterministic decision rules, so

that d : Q → A and d(q) denotes the alternative chosen whenever the current memory
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state is q.5 Let Q denote the set of all such stochastic finite-state automata.

A voter using one of these finite automata only needs to keep track of the memory

state q ∈ Q, to observe the latest signal s, and to remember her transition rule τ and

her decision rule d. With just that, she can transition to a new memory state according

to her transition function and the signal she observes; and she can take a decision over

alternatives according to her decision rule. If the set of memory states Q is small, this

is a simple enough exercise. More complex automata, with more memory states, are

costlier to operate.

We refer to the number of memory states in Q as the “memory capacity” of automa-

ton ⟨Q, q0, τ, d⟩ and we assume that using a automaton with finite memory capacity

|Q| costs κ · |Q|, for some κ ∈ R++.

Each voter i chooses her automaton to maximize her discounted, total expected

utility, by solving the optimization problem

max
⟨Q,q0,τ,d⟩∈Q

(
E

[
λ

∞∑
t=0

(δ)tu(aIt , θ, b
i) + (1− λ)

∞∑
t=0

(δ)tu(d(qt), θ, b
i)

]
− κ · |Q|

)
. (4)

In a large society, the probability that an individual agent’s choice affects the col-

lective choice is negligible —with a unit mass of agents, each agent is infinitesimal, and

this probability is exactly zero—and therefore the first summation in the expectation

drops out of each voter’s optimization problem (Brennan and Hamlin 1998), which

simplifies to finding the automaton that maximizes ex-ante expected expressive utility,

net of costs of running the automaton. Formally, an optimal automaton for voter i is

one that solves

max
⟨Q,τ,d,qo⟩∈Q

(
E

[
(1− λ)

∞∑
t=0

(δ)tu(d(qt), θ, b
i)

]
− κ · |Q|

)
. (5)

In Section 3 we find the optimal automaton for each voter, and we describe the

5We could conceive of an automaton with a transition rule from Q × A × S to Q, according to
which a voter’s choice of an alternative together with the observed signal jointly drive the transition
to a new memory state. However, since a voter’s own choice does not convey any information to the
voter about the state of the world, we simplify the class of automata under consideration to be ones
that only transition to a new memory state based on the signals observed by the voter, and not based
on the choices she makes.
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resulting polarization of voters. In Section 4 we show how the electoral process in a

representative democracy shapes the collective choice aIt .

3 Voter Polarization

Throughout this section, we assume that the alternative with greatest support in the

electorate becomes the collective policy choice aI , with ties broken randomly.

We define “voter polarization” as the phenomenon in which a positive mass of voters

support extreme alternative aL and a positive mass support extreme aR. We present

sufficient conditions under which voters polarize. Polarization is a matter of degree, in

proportion to the size of the masses of voters opposing each other at each extreme. We

define a degree of polarization that ranges from zero if one extreme has no support, to

one if each extreme is supported by exactly half the population.

For each θ ∈ {L,M,R}, let νt(aθ) denote the share of voters who support action aθ

in period t.

Definition 3.1. Society’s degree of polarization in period t is Ψt ≡ 4νt(a
L)νt(a

R).

We say that voters are polarized in period t if Ψt > 0.

Given that ex-ante —before the first signal is revealed—all voters support aM ; that

they all agree on the best alternative for any state of the world; and that they share

the same prior and observe a common sequence of signals that (asymptotically) reveals

the true state of the world, it might seem that optimizing agents could not polarize for

long.

Indeed, rational agents who process information perfectly, endowed with a common

prior and observing a common sequence of signals will agree on their posterior over

the state of the world, and once this posterior becomes sufficiently close to degenerate,

given their near common-value preferences, they will also agree on which alternative

to support. Whereas, we shall show that agents with limited memory capacity have

divergent posteriors and polarize, despite their common priors and common sequence

of signals.

We start by considering an environment in which voters do not polarize: the special

case in which extreme signals (ℓ or r) reveal the state of the world (formally, extreme
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qt\st ℓ m r
qL (1, 0, 0) (1, 0, 0) (1− αL − βL, βL, αL)
qM (1, 0, 0) (0, 1, 0) (0, 0, 1)
qR (αR, βR, 1− αR − βR) (0, 0, 1) (0, 0, 1)

Table 2: Transition probabilities to (qL, qM , qR) under automata in FA3.

signals are fully informative if ϵ in Table 1 is zero). In this case, the unconstrained

optimal decision rule is straightforward: the posterior on M increases as long as all

signals are m, and hence alternative aM continues to be optimal at period t as long as

sk = m for any k ∈ {1, ..., t}. In contrast, a single ℓ-signal, if ϵ = 0, drives the posterior

of L to one and reveals that aL is the correct alternative. A symmetric argument holds

for signal r and action aR as well.

Such a simple rule is accessible for a voter with very little memory capacity, using

any stochastic finite state automaton (SFSA) in the following class.

Definition 3.2. A SFSA is in class FA3 if it contains three memory states {qL, qM , qR};
its initial state is qM ; its decision rule is d(qθ) = aθ for each θ ∈ Θ; and for some αθ,

βθ ∈ [0, 1] such that αθ + βθ ∈ [0, 1] for each θ ∈ {L,R}, the transition rule probabil-

ities are given by Table 2, where each cell (qt, st) lists the probability of transitioning,

respectively, to qL, to qM , and to qR.

For each extreme state θ ∈ {L,R}, parameters αθ and βθ represent, respectively, the

probability of transitioning from qθ to the opposite extreme (αθ) and of transitioning

to moderation (βθ). For any (αL, βL, αR, βR) ∈ [0, 1]4 satisfying αθ+βθ ∈ [0, 1] for each

θ ∈ {L,R}, let FA3(αL, βL, αR, βR) ∈FA3 denote the specific automaton with vector of

transition parameters (αL, βL, αR, βR), as depicted in Figure 1.

Any automaton in class FA3 stays in moderate memory state qM choosing the

moderate alternative aM as long as all signals it observes are moderate (m). But

as soon as it observes an extreme (ℓ or r) signal, it transitions to the corresponding

extreme memory state (qL or qR), and it chooses the corresponding extreme alternative

(aL or aR). Once it arrives at an extreme memory state, it stays there until it observes

a contradictory extreme signal. If ϵ = 0, the first extreme signal revealed the correct

state of nature, and a contradictory extreme signal never emerges, so in this case, any
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Figure 1: Optimal 3-state automaton FA3(αR, βR, αL, βL)

automaton in class FA3 executes the unconstrained optimal decision rule (Lemma 6.2

in Section 6).

Whereas, if ϵ is positive, a perfectly rational agent with unlimited memory capacity

continues to update her belief. For instance, under state of the world M , although the

agent would occasionally receive the strong signals ℓ or r indicating L or R, she would

also receive many more m-signals and, in the long run, she would conclude the state

of the world is M .

We reach our case of interest: ϵ > 0 but small, so that extreme signals are rare and

hence very (but not perfectly) informative when they arise. In this environment, any

automaton in class FA3 features some attractive qualities for voters who find memory

capacity costly (κ > 0). First, any 3-state automata is cheap, as the voter only needs

to keep track of which of the three memory states she is in. Second, any automaton in

FA3 follows the optimal decision rule (namely, to choose the moderate action) as long

as all signals are moderate, which is likely to be for a long time if ϵ is small. Third,

if the first extreme signal happens soon enough, an automaton in FA3 again follows

the unconstrained optimal rule in following the signal to the corresponding extreme

memory state and choice of alternative. So far, so good.

Automata in FA3 only make two kinds of mistakes, relative to the unconstrained

optimum attainable only with unlimited memory capacity. First, they disregard the

small evidence provided by moderate signals. Moderate signals are quite likely in every

state, so one such signal does not shift a perfectly-computed posterior much. Automata
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in FA3 regard the very little information contained in a moderate signal as negligible,

and do not budge in any way upon observing it. But even if one moderate signal does

not mean much, an abundance of them does. So these automata err in not returning

to the moderate memory state after observing a sufficiently long history of signals in

which moderate signals are overwhelmingly preponderant. The key to the appeal of

FA3 automata is that for ϵ small, it takes a long time to accumulate a large number of

moderate signals. So by not returning to moderation when they should, these automata

depart from the unconstrained optimal decision rule only far into the future; and an

impatient voter finds choices consigned to a distant future to be of little relevance, and

not worth incurring a higher cost of memory capacity.

The second problem for any automation in this class is that, since it does not keep

track of how many ℓ or r signals it has observed, the automaton finds itself at a bit of a

quandary when it is at an extreme memory state (say qR) and it observes the opposite

extreme signal (say ℓ). Should it ignore the signal, or should it switch memory states?

It turns out that in such situation, randomization is useful: the optimal automaton

among those in class FA3 features a vector of transition probabilities (αL, βL, αR, βR)

that depends on all parameters, including the agent’s lean; if the cost κ of processing

information is sufficiently low, and extreme signals are sufficiently informative (i.e. if ϵ

is sufficiently close to zero), this automaton that is optimal among those in class FA3

is in fact optimal among all automata (Lemma 6.3).

Our first main result establishes sufficient conditions such that voters with lean of

high magnitude (|bi| large), once they get to the extreme memory state congruent with

their lean, will not transition away from it, and will support the extreme alternative

congruent with this lean, forever. For instance, an agent with a sufficiently high lean to

the right (bi sufficiently close to b̄), upon first seeing a right signal r, will immediately

transition to a state in which she supports alternative aR, and will not be swayed

away from this memory state and this support by any subsequent sequence of signals.

Likewise, under these conditions, an agent with a sufficiently high lean to the left (bi

sufficiently close to −b̄), will never be swayed away from supporting alternative aL after

seeing a single ℓ signal. It follows that after extreme signals ℓ and r have both been

observed, these agents polarize.
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Proposition 3.1. (Voter polarization) For any taste for compromise c ∈ (0, 1) and

any patience parameter δ ∈ (0, 1) that satisfy

c < 2

(
1− δ

1− δ + δµ

)2

, (6)

there exist b̄ sufficiently close to one and sufficiently small memory capacity costs (κ),

such that if the probability ϵ of an incorrect extreme signal is sufficiently small, in

all states of the world, with probability converging to one in t, and for any sequence

(sk)
∞
k=t+1 of signals after period t, votes polarize in all periods t′ > t as follows: for

some b∗ ∈ (0, b̄),

i. agents with a sufficiently left lean (namely, {i ∈ I : bi ∈ [−b̄,−b∗)}) support aL;

whereas,

ii. agents with sufficiently right lean (namely, {i ∈ I : bi ∈ (b∗, b̄]}) support aR.

The intuition for these sufficient conditions is as follows. With regard to societal

parameters, the cost κ of processing information must be small enough for voters to

be willing to distinguish between circumstances in which they would support different

alternatives,6 and extreme signals must be informative enough (ϵ small enough) to sway

voters when they observe one; these two conditions suffice for the optimal automaton

to be one in class FA3. An additional condition suffices for polarization to arise: voters’

taste for compromise c and/or patience δ must be low as made precise by Condition

(6), which makes a return to moderation unappealing.7

So, a combination of credible extreme signals, low taste for compromise, and impa-

tience, leads to voter polarization. Under these conditions, voters with lean of highest

magnitude polarize, and settle on permanently supporting the alternative that is con-

gruent with their preference lean, regardless of any information they receive after seeing

just one signal that supports their extreme choice.

6If processing information is prohibitely costly, voters would ignore all signals and always choose
the ex-ante preferred action.

7Condition (6) relating c, δ and µ can be equivalently restated as δ < 1−
√
0.5c

1−(1−µ)
√
0.5c

for any c ∈ (0, 1).

For higher δ’s, we can show that for any c ∈ (0, 1), there exists δ̄(c) < 1 such that if δ > δ̄, then
for the range κ and ϵ under which the optimal SFSA belongs to the class FA3, all voters return to
moderation with positive probability.
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While the proofs of our results are long and cumbersome, their intuition should be

clear. If under the moderate state of the world, extreme signals are sufficiently rare,

then when voters see one such extreme signal, they perceive it as very informative, and

they all agree to treat it as if it were correct, and to support the extreme policy that

corresponds to this extreme signal. As long as subsequent signals are either additional

realizations of the same extreme signal, or hardly informative moderate signals that

all voters ignore, all voters continue to agree and to support the extreme alternative

congruent with the extreme signals they’ve seen.

Disagreement arises only when voters first receive a contradictory extreme signal;

that is, either the first extreme signal was ℓ and now they see an r, or the first extreme

signal was r and now they see an ℓ. This is a surprise, and it generates greater

uncertainty as to whether the state is L or R (or it could also be M). Given this

uncertainty as to which of the two extreme policies is more likely to be correct, if the

moderate compromise is insufficiently appealing (if c is low, or if voters are impatient),

voters part ways according to their lean: those who lean sufficiently left choose the

left alternative, and those who lean sufficiently right choose the right alternative, while

with those with lean close to zero randomize between the two extremes, with greater

probability of supporting the extreme congruent with their lean.

The option of returning to moderation involves an inter-temporal trade-off that

only appeals to patient agents with lean near zero. Namely, because extreme signals

are very informative (and because voters forget how many moderate signals they have

also observed), conditional on knowing that they have observed two extreme signals,

all agents discount the possibility that the state of Nature is moderate, and prefer an

extreme action, or a lottery over the two extremes, better than moderation. Returning

to moderation thus involves a loss of expected payoff derived from the choice in the

current period. This loss is intolerable for impatient agents. Patient agents, on the

other hand, value the downstream informational upside of returning to moderation:

once the next extreme signal arrives, a voter at a moderate state of memory will follow

this signal with renewed confidence that it likely reveals the true state of Nature. This

informational benefit is more valuable to patient agents with lean close to zero, who

returned to moderation with maximal uncertainty about which extreme is correct, and

are thus more willing to wait it out for more information. Whereas, agents with an
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extreme lean only hesitate between the two extreme actions if they are almost certain

that the state of Nature is the one counter to their lean, so they have less to gain by

returning to moderation to gather more information... so they do not.

The full proof proceeds thus. Lemma 6.1 establish optimality conditions on the

automata that we use to model a voter’s choice, namely: at each memory state, the

voter must take the action that the voter believes gives her the highest payoff, and

after each signal the voter must transition to the memory state with the highest con-

tinuation payoff. However, the beliefs are not updated according to Bayes rule due to

the coarseness of any finite automaton, so they deviate from the Bayesian benchmark.

Lemma 6.2 shows that FA3 is the class of optimal automata for the special case in

which extreme signals are fully revealing, and Lemma 6.3 partially extends this result

to show that the optimal automata belongs to FA3 if extreme signals are very (though

no longer perfectly) informative. Lemma 6.4 then pins down the optimal automaton

for agents with high lean, and from this characterization we infer Proposition 3.1.

Since the distribution over types has full support, Proposition 3.1 implies that, with

probability converging to one, the degree of polarization Ψt is strictly positive, and is

proportional to the product of the mass of agents with leans in [−b̄,−b∗) and the mass

of agents with leans in (b∗, b̄].

While the exact value of the degree of polarization depends on parameter values and

on functional assumptions on the distribution of types, we show that if voters’ taste

for compromise (c) or patience (δ) are low, the polarized voters are not just a small

fringe on each side; on the contrary, a majority of the electorate radicalizes into one

or the other of the extremes, and in the long run, moderation never attains plurality

support.8

Define an “automaton profile” to be a measurable mapping ϕ : [−b̄, b̄] → Q such

that for each bi ∈ [−b̄, b̄], voter i with type bi follows automaton ϕ(bi) ∈ Q. For

any subset Q̄ ⊂ Q, we say that automaton profile ϕ is “in Q̄” if ϕ(bi) ∈ Q̄ for any

bi ∈ [−b̄, b̄].

Definition 3.3. An automaton profile ϕ in FA3 is symmetric if for any b ∈ [−b̄, b̄],

8To compare the sizes of the mass of voters who support each alternative, we prove (in the Online
Appendix) that these subsets of voters are measurable; that is, that there exists a countably additive
function that assigns a non-negative value —a size— to each of these subsets.
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according to automata ϕ(b) and ϕ(−b),

αR(b) = αL(−b), αL(b) = αR(−b), βR(b) = βL(−b), βL(b) = βR(−b). (7)

By symmetry of the payoff functions and the information structure, there exists an

optimal automaton that is symmetric. And if voters follow one such automaton, we

can compare the sizes of the support across alternatives, as in the next proposition.

Proposition 3.2. (Society’s extremism) Assume the distribution of types is sym-

metric. For any b̄ sufficiently close to one, and for any (c, δ) ∈ (0, 1)2 such that

c <

(
1− δ

1− δ + δµ

)2

, (8)

there exist a range of memory capacity costs (κ) such that that if ϵ is small enough, in

all states of the world, and for any symmetric optimal automaton profile that voters may

follow, with probability converging to one in t, in any period t′ > t, any alternative with

greatest support in the electorate and thus the collective policy choice aI are extreme.

In other words: if voters’ taste for compromise or patience are low, the probability

that moderation sustains a plurality of support among voters and is chosen vanishes.9

A partial intuition for this result is as follows: because voters, after observing the first

extreme signal, only return to support moderation as a temporary state of indecision

triggered by observing conflicting extreme signals, and they leave again as soon as they

observe another extreme signal, voters supporting an extreme alternative accumulate

over time, but those in support of moderation do not. The proof relies on the symmetry

assumption on the distribution of types by noting that for any positive b ∈ R++, if a

majority of voters with lean b return to moderation after observing an extreme signal

that contradicts their current extreme state of memory, then after observing the same

signal, an at least as large majority of voters with the opposite lean −b ignore the signal

and stay put (Lemma 6.6), so aggregating across all types, more voters stay in their

current extreme than move to moderation, and moderation never gains a plurality of

support.

9Like Condition (6), Condition (8) can be restated as δ < 1−
√
c

1−(1−µ)
√
c
.
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4 Parties’ Extremism in an Indirect Democracy

We now close our theory of polarization and extremism by introducing a stylized model

of political competition and policy implementation, in which in each period, two parties

P 1 and P 2 announce policy platforms, voters vote, and the party that obtains most

votes wins and implements its announced platform.

Players. We consider an electoral competition game played by the continuum of voters

introduced in Section 2, and by two political parties P 1 and P 2.

Let Fb denote the cumulative distribution function of voter types over [−b̄, b̄]. We

had assumed that this distribution of types has full support and (for Proposition 3.2)

that it is symmetric; we now also assume that it has a continuous density function fb.

We treat each party P 1 and P 2 as a fully rational unitary actor that follows Bayes

rule perfectly to update beliefs. Parties’ sole strategic decisions are to choose policy

platforms in each period, as a function of the observed past history of play in the game.

For each j ∈ {1, 2}, let aPj

t ∈ A denote the platform chosen by Party P j in period t,

where for any a ∈ A, committing to policy platform a
Pj

t = a implies that if P j wins

the period t election, then the alternative aIt collectively chosen by society through the

political process in period t is action a.

Timing and information. The timing in each period t = 0, 1, 2... is as follows:

1. Parties simultaneously commit to their individual platforms, a
Pj

t ∈ A, j = 1, 2.

2. If t = 1, 2, ..., the common signal st ∈ S about the state of the world is commonly

observed (in period t = 0 agents observe no signal).

3. Each voter i chooses which policy alternative ait ∈ A to support.

4. Each voter i chooses one of three voting alternatives: vote for P 1, vote for P 2,

or abstain.

5. The party that obtains a greater share of votes, denoted by wt, wins and imple-

ments its platform, with ties broken randomly. Hence aIt = awt
t .

We assume that parties observe the pair of platforms, the common signal about

the state of the world, the total mass of votes for each party, and the winning party in
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each period. In contrast, in each period, each voter observes only the pair of platforms,

the common signal about the state of the world, and her own private choices of which

policy alternative to support and how to vote.

We model the voters’ cost of increasing their memory capacity to process informa-

tion as a choice of an automaton with costly memory states (as described in sections

2 and 3). Thus, the observed partial history up to period t enters voter i’s decision-

making in period t only partially and indirectly through its effect on the memory state

qit of the finite automaton ⟨Qi, qi0, τ
i, di⟩ that voter i uses to guide her decisions. In

particular, the finite automaton employed by voter i enters period t at a given memory

state qit−1; it observes the public signal st released at the second step; and between

the second and the third step in the timing of the strategic environment above, it

transitions to a new memory state qit according to τ i (which can be stochastic), and it

produces a recommended alternative to support, di(qit) ∈ A, a recommendation that

voter i then follows in Step 3.

Parties’ motivations. Parties are office-motivated. They obtain a period payoff of 1

if they win, and 0 otherwise, with time discount factor δP ∈ (0, 1) across periods. For

ease of reading, we drop one parameter from the model by assuming the same time

discount for voters and parties, i.e. δP = δ.

Voters’ motivations. We assume that in each period, each individual voter solves

two individual choice problems sequentially.

In each period t = 0, 1, 2, ..., each voter i first chooses which alternative ait ∈ A to

support, trading off the desire to choose to support the right alternative, with the cost

of processing information. The solution is as detailed in Lemma 6.4: Agent i following

optimal automaton ⟨Qi, qi0, τ
i, di⟩ chooses to support action ait = di(qit) ∈ A, where qit is

the memory state i’s automaton reaches in period t, and di is the automaton’s decision

rule.10

Once voter i has identified which alternative in ait ∈ A she supports, voter i faces

10Notice that there is a restriction here. Namely, voters’ automata only process information about
the state of the world directly obtained through the sequence of signals (st)

∞
t=1, but they do not

recognize the potentially informative indirect signaling content of the parties’ announced equilibrium
platforms. This restriction is supported by evidence that agents overweigh their own experience and
their own private signals, over the information that can be inferred from the behavior of other agents
(Kogan 2008; Kaustia and Knüpfer 2008).
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a second choice problem; namely, whether to vote for Party 1, to vote for Party 2, or

to abstain. Let vit ∈ {P 1, P 2, ∅} denote the voting decision of agent i in period t, with

vit = ∅ representing abstention.

We assume that voters obtain an expressive payoff from voting, additive in each

period to Expression (3), so that the expression of agent i’s overall utility in the

democratic environment with an election in each period is

λ

∞∑
t=0

(δ)tu(aIt , θ, b
i)︸ ︷︷ ︸

Instrumental utility

+(1− λ)
∞∑
t=0

(δ)tu(ait, θ, b
i)︸ ︷︷ ︸

Support expressive utility

+
∞∑
t=0

(δ)tuv(v
i
t)︸ ︷︷ ︸

Vote expressive u.

, (9)

where uv is the period expressive utility derived from voting.

Since a voter’s individual vote cannot have any influence over the election outcome,

nor over future play (it cannot even be individually observed by other agents), the

instrumental utility component drops out of the summation, and each voter’s behavior

is driven exclusively by the expressive payoffs.

Expression (9) decouples the act of supporting a policy alternative, from the act

of voting. A citizen can support any policy alternative by advocating for it in con-

versation, in writing, or in civic activism, deriving an expressive payoff from any of

these activities. A citizen can only vote by casting a ballot for one of the two com-

peting parties, and it is this specific act that delivers the additional expressive utility

term uv(v
i
t). The expressive utility from the choice of alternative to support is the one

maximized, net of the cost of memory capacity, by the optimal automaton in the op-

timization problem (5). The expressive utility from voting is determined by the voter

by her voting choice in each period.

We normalize the expressive utility from abstaining to zero, so uv(∅) = 0 for any

agent i, for any period t. We assume that the expressive utility from voting depends on

whether the vote aligns or not with the policy alternative that the voter has determined

is best, according to her optimal automaton. Namely, if voter i votes sincerely for a

party that commits to the alternative chosen by voter i’s optimal automaton, then voter

i obtains a positive expressive payoff; whereas, if voter i votes for a party committed

to an alternative that is not the one chosen by voter i’s optimal automaton, then voter

i incurs a disutility from such vote.
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Formally, there exists a parameter ūv > 0 such that, for each j ∈ {1, 2}, for each
voter i and for each period t, if di(qit) is the alternative chosen in period t by the optimal

automaton chosen by voter i to solve her optimization problem (5), then

uv(v
i
t) =


ūv if vit = P j and a

Pj

t = di(qit);

−ūv if vit = P j and a
Pj

t ̸= di(qit); and

0 if vit = ∅.

(10)

We think of di(qit) as the optimal automaton’s recommendation, so that voter i has

agency over the choice of alternative ait ∈ A given this recommendation. If voters follow

their optimal automaton, they support the alternative chosen by their automaton (that

is, if ait = di(qit) for every voter i and period t). If so, agents derive expressive utility

from voting for the alternative they support.

Whereas, if voter i deviates and chooses to support an alternative a ̸= di(qit) that

is not the one recommended by the voter’s optimal automaton, then the voter enjoys a

positive expressive payoff of voting if she votes for a party that commits to alternative

di(qit), not for voting for a party that commits to a.11

An agent’s vote has no effect over the agent’s current period instrumental payoff,

no effect over the current period expressive payoff from the choice of an alternative to

support, and no effect on future play. Therefore, the agent’s voting problem in each

period t reduces to the static optimization problem

max
vit∈{P 1,P 2,∅}

uv(v
i
t). (11)

Equilibrium concept. In our model, an equilibrium is a profile in which each voter

chooses an optimal automaton and takes actions aligned with her automaton’s rec-

ommendations, and in which parties’ strategies are sequentially rational given voters’

behavior and given beliefs updated by Bayes rule. We next formally define this concept.

At the beginning of the game, each voter i chooses a stochastic finite state au-

11Alternative di(qit) is the one voter i thinks is best, while we can interpret alternative ait is the one
voter i claims to support in public. Vote vit is cast in a secret ballot, where the positive expressive
utility from voting comes from voting one’s conscience sincerely for what one thinks best.
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tomaton ⟨Qi, qi0, τ
i, di⟩ ∈ Q. At the time she chooses an action in period t, voter i

has observed the following: the party platforms, the public signals, her automaton’s

memory states and recommended actions, and her own chosen action and voting de-

cision in every period up to t− 1, plus the party platforms, the public signal and her

automaton’s memory state and recommended action in period t. Let voter i “support

function” refer to a mapping from the set of all these observables for any period t, to

the set of actions A. Similarly, the set of all observables at the time voter i chooses

her vote in period t includes all of the above, plus her own choice of which action to

support in the current period. Let voter i’s “voting function” refer to a mapping from

the set of all such observables for any period t, to the set of probability distributions

over voting options {P 1, P 2, ∅}.
For each party, a pure strategy is a standard object: a mapping from information

sets to the set of actions A, and a mixed strategy is a probability distribution over

pure strategies.

Definition 4.1. An equilibrium is a support function and a voting function for each

voter, and a mixed strategy profile for candidates that satisfy the following.

1. (Voters optimize) There exists a symmetric automaton profile ϕ : [−b̄, b̄] →
FA3 such that for each voter i, ϕ(bi) ≡ ⟨Qi, qi0, τ

i, di⟩ ∈ FA3 solves optimization

problem (5) and is such that for any period t,

(a) (Sincere support) The action ait that i chooses in period t is di(qit) for

any realization of all the observables observed by i up to her choice of which

action to support in period t.

(b) (Sincere voting) For any realization of observables observed by i up to

her period t vote, any vote vit that agent i casts with positive probability is a

solution to

max
vit∈{P 1,P 2,∅}

uv(v
i
t).

2. (Parties optimize) The parties’ strategy profile is a sequentially rational profile

given the voters’ support function and voting function, and given that parties

update beliefs according to Bayes rule.
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The intuition behind this formal notion of equilibrium is as follows. Voters want

to learn which alternative is best, but it is costly for them to keep track of all the

informative signals in detail, so they resort to a cost-efficient automata. An optimal

automaton makes the best possible recommendation to maximize the expressive utility

from supporting an action, based on the available signals and on the constraints induced

by the cost of memory capacity. Equilibrium condition 1(a) requires voters to follow

this recommendation: each voter supports the alternative that is recommended by an

automaton that is optimal for her, given her type.

Equilibrium condition 1(b) requires each voter to vote optimally, given what she

thinks best. Equilibrium condition 2 is that parties best respond at every information

set, given standard Bayesian-updating beliefs. Equivalently, taking voters’ optimal

behavior as given, parties play a Weak Perfect Bayes Nash equilibrium (Mas Colell,

Whinston and Green 1995) of the 2-player electoral competition game induced by

voters’ behavior.

We say an equilibrium is “neutral” if voters, when indifferent between the two

parties, vote for each party with equal probability. Formally, in a neutral equilibrium

argmax
vit∈{P 1,P 2,∅}

uv(v
i
t) = {P 1, P 2} implies Pr[vit = P 1] =Pr[vit = P 2] = 1

2
.

Results

A neutral equilibrium exists (Lemma A.2 in the Appendix). The intuition for existence

is as follows. First, an optimal automaton profile exists for voters; for each voter

i, following her automaton’s recommendation for which alternative to choose, and

then voting for any party that announces this alternative (and abstaining if none do)

constitute a profile with sincere support and sincere voting. With regard to the two

parties, the two-player, one-period game that takes voters optimal behavior as given

and ignores the future is a finite game, and thus it has an equilibrium. A collection

of such one-period equilibria of the two-player game, one for each possible one-period

game that the parties might face, constitutes an equilibrium of the full game.

If voters are sufficiently impatient and averse to compromise so that the most

supported policy is surely to be an extreme one (as shown in Proposition 3.2), then both

parties choose extreme policy platforms, and the implemented policy is also extreme.
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Proposition 4.1. (Parties’ extremism) Given a symmetric distribution of types

with full support over
[
−b̄, b̄

]
and b̄ sufficiently close to one, and for any preference

parameter c ∈ (0, 1) and discount δ ∈ (0, 1) that satisfy

c <

(
1− δ

1− δ + δµ

)2

,

there exist a range of costs of processing information (κ) such that if the probability

ϵ of an incorrect extreme signal is sufficiently small, in all states of the world, in all

neutral equilibria, with probability converging to one in t, in every period t′ ≥ t, both

parties propose extreme policy platforms.

Society’s radicalization to the extremes (Proposition 3.2) drives candidates’ to the

extremes as well. Expressive voters are uncompromising in the sense that they only vote

for a candidate who embraces a policy position that they sincerely support. Candidates,

thus, must react as in the quote attributed to French Minister Ledru-Rollin: “there go

the people, and I must follow them, for I am their leader.”

In the Moderate state of the world (M), this candidate behavior constitutes pan-

dering: over time, parties accumulate sufficient moderate signals to be arbitrarily close

to certainty that the moderate policy aM is best for every citizen, as it is in fact the

case. If voters were fully rational and could process information costlessly (i.e. κ = 0),

they too would learn that moderate policies are best, and at least one party would of-

fer moderation and would get elected. As it is, voters who find processing information

costly only react to extreme signals, and a majority end up supporting extreme alter-

natives. Candidates know better, but chasing votes, they too locate at the extremes,

where the voters are found.12

If parties posterior belief at a given period t given the sequence of observed signals is

that the state of Nature is most likely Moderate, they anticipate that the signal st will

most likely be moderate (m), and that the distribution of support across alternatives

in period t will be most likely the same as in the previous period. In particular, if

one extreme alternative, say aL, gathered the most support in period t − 1, the same

12The rationale for such pandering was perhaps best articulated by then Prime Minister of Luxem-
bourg, Jean-Paul Juncker: “We all know what to do, but we don’t know how to get re-elected once we
have done it”, quoted in The Economist in “The quest for prosperity”, March 15, 2007.
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extreme alternative will likely gather the most support once again. Parties mutually

best respond by both announcing this alternative as their platform.

Extension: Differentiated candidates. We consider an extension that generates

platform divergence: policy-differentiated parties, such that in the eys of the voter, each

party has an exogenously given advantage on a different extreme policy, as in Krasa

and Polborn (2010, 2012, 2014). Formally, instead of labeling parties neutrally as P 1

and P 2, let them be meaningfully labeled PL and PR, such that for each θ ∈ {L,R},
party P θ announcing platform aθ delivers additional utility u+ ∈ (0, ūv), additive to

the payoffs indicated in Expression (10) to any voter voting for the party. Under such

specialization, parties cannot effectively compete on the extreme policy for which they

have a comparative disadvantage. Regardless of which of the two extreme alternatives

gathered greater support in the previous period, say aL, as long as parties believe that

aL is most likely to gather the most support again, but that if st = r, then aR would

gather the most support, then parties would polarize as well, each of them announcing

the extreme platform in which they have a comparative advantage.13

Differentiated parties thus polarize even after they learn that the moderate policy

aM is Pareto superior. In this environment, electoral majorities and implemented

policies alternate between the two extremes according to the realization of the sequence

of signals, and aggregate welfare suffers.

5 Discussion

In our theory of polarization, costs of processing information drive voters to polarize

(Proposition 3.1). The moderate political center loses support, and most of the elec-

torate radicalizes to the extremes (Proposition 3.2). Fully rational office-motivated

parties pander to this radicalized electorate and their platforms become extreme as

well (Proposition 4.1).

This theory of voter-driven polarization is consistent with the evidence from its

motivating phenomenon: the political polarization in the United States around the

13This result holds as well if one of the two parties also has a small advantage on the moderate
policy: in circumstances in which choosing moderation is dominated by extremism, it does not matter
who would win if both parties chose moderation.
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L M R Polarization Ψt

2004 28% 57% 15% 0.168
2011 27% 50% 23% 0.248
2014 32% 44% 24% 0.307
2017 42% 37% 21% 0.353
2019 42% 38% 20% 0.336

Table 3: Polarization of the US electorate, 2004-2019.

election and presidencies of Obama and Trump.

Longitudinal survey data collected by the Pew Center records a sharp polarization

of the US electorate from 2004 to 2019, as shown in Table 3.14

Longitudinal data from the American National Election Studies (ANES) shows that

respondents perceive the two main political parties to have polarized as well. As shown

in Figure 2, the gap in the perceived position of the Democratic and Republican parties

on a 0 to 10 ideological scale has more than doubled from 2008 to 2020; while until

2012 both parties were perceived to locate within the middle third of the scale, in 2020

the parties were perceived to be located one at each extreme third of the scale.

The standard wisdom is that the GOP moved to the right under pressure from its

voters and activists: “In this telling, GOP candidates and elected officials are merely

reflecting what their most fervent popular supporters demand” (Skocpol 2019). Skocpol

and Williamson (2016, Ch. 5) explain that in this period, “the Tea Party boosts the

GOP and prods it rightward.” Drawing from rich qualitative evidence and quantitative

analysis, Skocpol and Tervor (2019) document how grassroot movements —aided by

elite political actors— on the right and the left pulled not only the GOP but also the

Democratic Party toward more polarized positions.

Our theory provides an explanation for the root cause of this process: the ideological

polarization of the electorate.

Going forward, our theory predicts that, absent a shock outside our model, a state

14We use data from the 2004, 2011, 2014 and 2017 Political Typology surveys (December 1-16, 2004,
n=2,000; February 22 to March 14, 2011, n=3,030; January 23 to March 16, 2014, n=10,013; and
June 8-18, 2017, n=2,504); and the 2019 Political survey (September 5-16, 2019, n=2,004) to place
respondents on a left/right scale from −10 to +10 based on their answers to ten invariant ideological
questions, and we partition the scale into three equal-length intervals: L for values from −10 to −4,
M for values from −3 to +3, and R for values from +4 to +10.
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Figure 2: Party polarization in the US, 2004-2020.

of high support for extremist policies, and a polarized electorate, are irreversible: in an

environment with frequent (and thus weak) moderate signals and ex-ante rare extreme

signals, voters with limited capacity to process information will never learn enough

to be convinced that the state is moderate, and will always be subject to the pull of

extremism.

Whether polarization is indeed “permanent” in practice depends on the time scale

under consideration. In the United States, polarization was permanently high for

decades during the Gilded Age and the Progressive Era (1880s-1910s) (Putnam 2020),

and it is once again high a little over a century later... but in between these two

crests, during World War II and in its wake, there was a period of a broad national

consensus and low polarization that lasted through the Eisenhower Presidency in the

1950s (Hofstadter 1964). Over long historical time-spans, polarization ebbs and flows.

While our theory is dynamic with an infinite horizon, we interpret it as applicable to

explain only part of this historical evolution: the rise of polarization over a relatively

short period of time. The return to a national consensus responds to factors outside

our model. Chief among such potential factors are external security threats (Desch

1995) that trigger a “rally round the flag” unifying effect (Groeling and Baum 2008).

One could, if desired, embed our theory into a more general account of the rise and

fall of polarization over history: suppose that at the conclusion of each period, with

some small probability, the entire political environment suffers a common-knowledge
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shock that resets the state of the world, drawing it anew from its common prior distri-

bution. Formally, this is but a small departure from our model: it suffices to interpret

the shock as “ending” the game and starting a new one,15 and to reinterpret the dis-

count factor δ as including both the time discount and the probability that the game

restarts after each period. Voters’ behavior over the infinite sequence of such games

is cyclical: agents abruptly return to a consensus on moderation at the start of each

new game, and then in this new game they eventually polarize at the extremes, before

returning to moderation at the next game-ending shock.

If we are correct in our prediction that —until the next unifying national crisis,

threat or shock— polarization is permanent, social interventions that seek to nudge

the electorate back to moderation (such as regulating online content, deplatforming

extreme speakers, or seeking to break information bubbles by exposing audiences to

both sides of an argument) are likely to have limited success. Rather, fostering norms

of tolerance of dissent and view-point diversity, and enshrining civil discourse and the

democratic process as the means to channel ideological disagreement, may better help

to manage ongoing political polarization.

6 Proofs

The proofs are organized as follows. We first present a technical lemma, Lemma 6.1,

which we subsequently use to prove the results in Section 3. We prove Proposition 3.1

by first proving two preliminary lemmas, Lemma 6.2 and Lemma 6.3, and then estab-

lishing Lemma 6.4, from which Proposition 3.1 follows as a corollary. Proposition 3.2

is proved by two technical lemmas, Lemmas 6.5 and 6.6. Finally, we prove Proposition

4.1.

We first characterize the optimal SFSA for a given number of memory states, |Q| =
K, and will later take the cost κ of the memory states into account. This generalizes

the result for two states of nature in Wilson (2014) to a our setting with three states

of nature. The key to this characterization is a definition of surrogate “beliefs” at each

memory state q ∈ Q. Given a state of nature θ and a memory state q ∈ Q, for an

15Just like the Algiers crisis of 1958 triggered the end of the Fourth Republic and the advent of the
Fifth Republic in France.
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agent i with type bi, the expected payoff accumulated from q conditional on θ is then

1q=q0u[d(q0), θ, b
i] + δ

∑
s1∈S

τ(q0, s1; q)µ
θ
s1
u[d(q), θ, bi]

+(δ)2
∑

q1∈Q,s1,s2∈S

τ(qo, s1; q1)µ
θ
s1
τ(q1, s2; q)µ

θ
s2
u[d(q), θ, bi] + .....

=
1

1− δ
fq(θ)u[d(q), θ, b

i],

(12)

where the auxiliary function fq(θ) is defined as follows:

fq(θ) ≡
∞∑

T=1

(1− δ)(δ)T−1

 ∑
(q1,....qT−1),(s1,...,sT−1),qT=q

1q1=q0

T−1∏
t=1

µθ
stτ(qt, st; qt+1)

 . (13)

This then motivates the following definition of the surrogate beliefs:

p(q)(θ) ≡ P0(θ)fq(θ)∑
θ′ P0fq(θ′)

and p(q, s)(θ) ≡ P0(θ)fq(θ)µ
θ
s∑

θ′ P0(θ)fq(θ)µθ′
s

. (14)

Indeed, at memory state q, optimality requires

d(q) ∈ argmax
a∈A

∑
θ∈Θ

p(q)(θ)u(a, θ, bi). (15)

Note that p(q, s) is updated using Bayes rule from p(q) and signal s. The following

characterization result extends this optimality requirement to transitions. We use

Vq(θ, b
i) to denote the continuation value for agent i with type bi at memory state q

conditional on the state of nature being θ. We say that two memory states are equivalent

if they share the same transition rules to any other states or their equivalents, and

have the same decision rule. With these definitions, we have the following necessary

conditions for optimality.

Lemma 6.1. Let K ∈ N and assume ⟨Q, q0, τ, d⟩ is a SFSA without equivalent states

that is optimal among those of size |Q| = K. For each q ∈ Q, and for each type
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bi ∈ [−b̄, b̄], define

Πq(b
i) ≡

{
p ∈ ∆(Θ) :

∑
θ∈Θ

p(θ)Vq(θ, b
i) ≥

∑
θ∈Θ

p(θ)Vq′(θ, b
i) for all q′ ∈ Q

}
. (16)

Then, for each q ∈ Q with p(q) and p(q, s) defined by the pair of expressions (14),

τ(q, s; q′) > 0 ⇒ p(q, s) ∈ Πq′(b
i). (17)

The proof of Lemma 6.1 follows similar steps as those in Wilson (2014); for com-

pleteness we give a proof in the Appendix.

We next prove the claim that if extreme signals are fully informative (i.e., ϵ = 0 in

Table 1), class FA3 implements the unconstrained optimal rule and hence is uniquely

optimal among all SFSA with 3 memory states.

Lemma 6.2. Under the preferences and the information structure given by Table 1, for

any bi ∈ [−b̄, b̄], c ∈ (0, 1) and ϵ = 0, and for any (αL, βL, αR, βR) ∈ [0, 1]4 satisfying

αθ+βθ ∈ [0, 1] for each θ ∈ {L,R}, the unconstrained optimal rule can be implemented

by automation FA3(αL, βL, αR, βR). Further, among automata with 3 memory states,

only those in class FA3 implement this unconstrained optimal rule.

Proof. The optimal decision rule, denoted by D∗, is such that D∗(∅) = aM as the prior

has P0(M) > 1/2, and, for any t ≥ 1, and for any sequence (aν)t−1
ν=0,

D∗(s1, ..., st; a0, ..., at−1) = aM if sτ = m for all τ = 1, ..., t; (18)

D∗(s1, ..., st; a0, ..., at−1) = aL if sτ = ℓ for some τ such that sτ ′ = m for all τ ′ < τ ;

D∗(s1, ..., st; a0, ..., at−1) = aR if sτ = r for some τ such that sτ ′ = m for all τ ′ < τ.

Under the information structure in Table 1 with ϵ = 0, it is impossible to have an r-

signal followed by an ℓ-signal or vice versa. Thus, the transition probabilities αL, αR,

βL, βR do not matter, and FA3(αR, βR, αL, βL) implements D∗ for any αR, βR, αL, βL ∈
[0, 1]. Moreover, any optimal SFSA with |Q| = 3 must take this form.

Now we take the cost of processing information, κ, into account, and the following

lemma then shows that, for sufficiently small κ, and sufficiently small ϵ, the class FA3
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includes all the optimal SFSA.

Lemma 6.3. There exist κ̄ ∈ R++ and a function ϵ̄ : (0, κ̄) → R++ such that for any

bi ∈ [−b̄, b̄], c ∈ (0, 1), and for any κ ∈ (0, κ̄) and for any ϵ ∈ (0, ϵ̄(κ)), the optimal

SFSA belongs to class FA3.

Proof. For any K ∈ N, let V̄K(ϵ, b
i, c) be the optimal payoff from K-memory-state

finite automata under ϵ ≥ 0 for bi ∈ [−b̄, b̄] and c ∈ [0, 1]. Note that for any (bi, c),

V̄2(0, b
i, c) > V̄1(0, b

i, c), V̄K(0, b
i, c) > V̄2(0, b

i, c) for all K ≥ 3, and V̄K(0, b
i, c) =

V̄K′(0, bi, c) for all K ≥ 3 and all K ′ ≥ K.

Define

κ(bi, c) ≡ min

{
V̄3(0, b

i, c)− V̄1(0, b
i, c)

2
, V̄3(0, b

i, c)− V̄2(0, b
i, c)

}
,

and κ̄ ≡ infbi∈[−b̄,b̄],c∈(0,1) κ(b
i, c), and notice that κ(bi, c) > 0 for any parameters in that

range, with values bounded away from zero over there, so κ̄ > 0. Assume κ ∈ (0, κ̄);

then every agent prefers the optimal three-state automaton over any automata with

fewer states. Given κ, by continuity of V̄k(ϵ, b
i, c) with respect to ϵ, there exists ϵ̄(κ) ∈

R++ sufficiently small that V̄k(ϵ̄(κ), b
i, c)− V̄3(ϵ̄(κ), b

i, c) < kκ for all k ≤ V̄3(0, b
i, c)/κ

and for any bi ∈ [−b̄, b̄], c ∈ (0, 1). Then for any ϵ ∈ (0, ϵ̄(κ)), the optimal automaton

has three memory states.

Given that optimal SFSA has K = 3, now we prove that any optimal SFSA has

the form of FA3(αL, βL, αR, βR). To do so, first we compute the value functions, whose

detailed derivation can be found in the Appendix. Second, we rely on Lemma 6.1 to

conclude that optimal automata belong to FA3.

To show the optimality of FA3(αR, βR, αL, βL), we divide the set of SFSA into two

groups. Automata in the first group have transition probabilities close to those in

FA3(αR, βR, αL, βL), while the second group consist of all others. We then show that

FA3(αR, βR, αL, βL) with optimal α’s and β’s is the unique optimal SFSA within the

first group, and outperforms those in the second group. The first claim is proved using

Lemma 6.1, while the second follows from the uniqueness in Lemma 6.2 and continuity

of the optimal value for ϵ close to zero.

We first define a distance between SFSA. For any two SFSA ⟨Q, q0, τ, d⟩ and
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⟨Q, q0, τ
′, d⟩, define the distance between them as maxq∈Q ∥τ(q, s) − τ ′(q, s)∥, where

∥ · ∥ is the Euclidean distance over ∆(Q).

Now, let τ(α,β)(q, s) and d3 denote the transition probabilities given (q, s) ∈ Q× S
and the decision rule of automaton FA3(αR, βR, αL, βL), and define

FA(ρ) ≡
{
⟨(qL, qM , qR), qM , τ, d3⟩ : ∥τ(q, s)− τ(α,β)(q, s)∥ < ρ for all (q, s) ̸= (qR, ℓ), (qL, r)

}
.

(19)

That is, FA(ρ) consists of SFSA within distance of ρ to some SFSA in class FA3. Let

FAc(ρ) denote the set of all SFSA with |Q| = 3 not in FA(ρ).

Now, for any ρ, ϵ ∈ R++, and any (bi, c), define

W (ρ, ϵ, bi, c) ≡ max
FA∈FAc(ρ)

V (FA, ϵ, bi, c),

where V (FA, ϵ, bi, c) is the expected ex ante payoff under (bi, c) from an arbitrary SFSA

FA under ϵ. Notice that since FAc(ρ) is compact, and V (FA, ϵ, bi, c) is continuous in

FA, the maximum exists and W (ρ, ϵ, bi, c) is well defined.

For any (bi, c) in the range and for any αL, βL, αR, βR ∈ [0, 1],

W (ρ, 0, bi, c) < V [FA3(αR, βR, αL, βL), 0, b
i, c].

By continuity and the Theorem of the Maximum, for any (bi, c), there exists ϵ̃(bi, c) ∈
(0, ϵ̄(κ)] (where ϵ̄(κ) is as defined above), such that

W (ρ, ϵ, bi, c)) < V [FA3(αR, βR, αL, βL), 0, b
i, c]

for all ϵ ≤ ϵ̃(bi, c). Further, infbi,c ϵ̃(b
i, c) > 0, so there also exists a common ϵ̃ such that

W (ρ, ϵ, bi, c) < V [FA3(αR, βR, αL, βL), ϵ, b
i, c]

for all ϵ ≤ ϵ̃. Therefore, for sufficiently small ϵ, the optimal automaton in FA(ρ) (if

there is one) is also strictly better than any automaton in FAc(ρ), and thus if it exists,

it is the optimal 3 state automaton.

To show that there exists a three-state automaton of the form FA3(αR, βR, αL, βL)
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that is optimal among those in FA(ρ), we appeal to Lemma 6.1 to show that optimal

transitions follow those in FA3(αR, βR, αL, βL). Recall that the surrogate belief at qM

after seeing signal r for state R, p(qM , r)(R), according to Definition (14) is given by

P0(R)fqM (R)µR
r

P0(L)fqM (L)µL
r +P0(M)fqM (M)µM

r +P0(R)fqM (R)µR
r

,

which is arbitrarily close to one for sufficiently small ϵ; see detailed computation of the

beliefs fq(θ)’s in the Appendix. Similarly, if ϵ is sufficiently small, then p(qR, r)(R) and

p(qR,m)(R) are arbitrarily close to one. Symmetrically, p(qM , l)(L), p(qL, l)(L) and

p(qL,m)(L) are arbitrarily close to one. Note as well that VqR(R) > VqM (R) > VqL(R)

and VqL(L) > VqM (L) > VqR(L) for ϵ sufficiently small (again, see detailed computations

in the Appendix). These two observations, combined together and with Assumption

(1), imply that if ϵ is sufficiently small, then under any automaton in FA3, for any

(q, s) other than (qR, ℓ) and (qL, r), if τ(α,β)(q, s) = q′, then p(q, s) ∈ INT(Πq′).

Since the continuation values and beliefs given by the pair of expressions (14) are

continuous in both ϵ and in the transition probabilities, there exist ρ0 > 0 and ϵ0 > 0

such that for any (q, s) other than (qR, ℓ) and (qL, r), if τ(α,β)(q, s) = q′, then p(q, s) ∈
INT(Πq′) as well for all ϵ ≤ ϵ0 and for all SFSA in FA(ρ0). Lemma 6.1 then implies

that for all ϵ ≤ ϵ0, among SFSA in FA(ρ0), any optimal automaton must be of the

form FA3(αR, βR, αL, βL). Further, since the class of automata FA3(αR, βR, αL, βL)

is compact, and utilities are continuous in transition probabilities, a solution to the

voter’s optimization problem (5) exists, and thus FA3(αR, βR, αL, βL) with optimal α’s

and β’s is the optimal SFSA among those in FA(ρ0).

The following lemma identifies sufficient conditions for an agent to transition to an

absorbing extreme memory state such that she never transitions out of such state and

it is key to the proof of Proposition 3.1. We use uR to denote 1 + bi and uL for 1− bi,

bi ∈ [−b̄, b̄], and for each θ ∈ {L,R} we let γθ ≡ 1−αθ−βθ denote the probability that

the SFSA stays at qθ when receiving an extreme signal (ℓ or r) that is not equal to θ.

Lemma 6.4. For any δ ∈ (0, 1) and any sufficiently small cost κ, there exist ϵ̄(κ, δ) > 0

such that for all ϵ ≤ ϵ̄, and for any (uR, uL) ∈ [1, 2)2 and c ∈ (0, 1) any optimal SFSA

takes the form of FA3(αL, βL, αR, βR). Moreover, we have the following characteriza-
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tion.

� If

uR ≥ δµ (1− δ + δµ)uL + (1− δ + µδ)2 c

(1− δ)2
+

2δϵ

µ(1− δ)3
, (20)

then any optimal SFSA features βL = βR = 0.

� Further, if Inequality (20) holds and

(uR + c)

(uL + c)
>

(
1− δ (1− µ+ ϵ)

1− δ (1− ϵ)

)2

, (21)

then optimal γR = 1− αR − βR = 1 and optimal αL = 1.

Proof. Lemma 6.3 shows that optimal SFSA takes the form of FA3(αL, βL, αR, βR).

Now we show that under condition (20), the optimal SFSA features no transition to

moderation, i.e. βL = βR = 0. Denote ρ0 ≡ P0(M)/P0(L). Let

G(αR, βR, αL, βL) = VqM (L) + VqM (R) + ρ0VqM (M).

Then optimal α’s and β’s optimize G. For our purpose, it is easier to work with β’s

and γ’s, taking αL = 1 − βL − γL and αR = 1 − βR − γR. We derive the expressions

of the value functions according to this substitution in the Appendix. First we claim

that, for ϵ small, optimal βR = βL = 0 under Condition (20). To prove the claim, we

show that, under Condition (20), for all βL, βR, γL, γR,
∂G
∂βL

< 0. This follows from

straightforward algebraic computations and comparisons of the conditions, with details

in the Appendix. This implies that optimal βL = 0. Similarly, we claim that ∂G
∂γR

> ∂G
∂βR

for all βL, βR, γL, γR. Again, this follows from Condition (20) with straightforward

computations, with details in the Appendix. This implies that optimal βR = 0.

Finally, we claim that, if both conditions (20) and (21) hold, then optimal 1−γR =

0 = γL. We show this by computing ∂G
∂γR

with βL = βR = 0 and argue that it is positive

for all γR and γL if (21) holds. Similarly, ∂G
∂γL

< 0 for all γR, γL ∈ [0, 1] if Condition

(21) holds. This implies that optimal 1 − γR = 0 = γL. Again, details are in the

Appendix.

We next use Lemma 6.4 to prove Proposition 3.1.
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Proof of Proposition 3.1.

Proof. Define

b∗1 ≡
δµ(1− δ + δµ)− (1− δ)2 + (1− δ + δµ)2c+ 2δϵ

µ(1−δ)

δµ(1− δ + δµ) + (1− δ)2
. (22)

Plugging uR = 1 + bi and uL = 1− bi, we find that Condition (20) holds if and only if

bi ≥ b∗1. Now we show that, for ϵ sufficiently small, Condition (6) implies that b∗1 < 1.

To see this, b∗1 < 1 if and only if

(1− δ + δµ)2c+
2δϵ

µ(1− δ)
< 2(1− δ)2,

which holds under Condition (6) if ϵ is small. Similarly, plugging in uR = 1 + bi and

uL = 1− bi, we find that Condition (21) holds if and only if

bi ≥ b∗2 ≡ [(1− δ + δ(µ− ϵ))2 − (1− δ(1− ϵ))2](1 + c)

(1− δ + δ(µ− ϵ))2 + (1− δ(1− ϵ))2
.

Moreover, under Condition (6), b∗2 < 1 becuase

c <
2(1− δ)2

(1− δ + δµ)2
<

2(1− δ + δϵ)2

(1− δ + δ(µ− ϵ))2 − (1− δ + δϵ)2
,

where the last inequality holds if ϵ is small.

Thus, for bi ≥ b∗ ≡ max{b∗1, b∗2}, by Lemma 6.4, αL = 1 and αR = βR = 0.

By a symmetric argument, up to relabeling of left and right, bi ≤ −b∗, αR = 1 and

αL = βL = 0.

The next lemma resolves some technical questions about measurability (with the

proof in the Appendix). Given a measurable automaton profile ϕ, for each b ∈ [−b̄, b̄],

each θ ∈ {L,M,R}, and each t ∈ N, let νb
t (a

θ) denote the fraction of voters of type b

who support action aθ at time t given that they follow automaton ϕ(b).

Lemma 6.5. A measurable optimal automaton profile ϕ in FA3 exists, and if voters
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follow such ϕ, then for any θ ∈ {L,M,R}, the size of support for alternative aθ is

νt(a
θ) =

∫
b∈(−b̄,b̄)

νb
t (a

θ)f(b)db. (23)

We next give a result from which Proposition 3.2 follows as a corollary. We relegate

the proof of Lemma 6.6 to the Appendix.

Lemma 6.6. Assume voters follow a symmetric measurable automaton profile ϕ in

FA3. For any path of signal realizations and any period t such that at least one extreme

signal has realized in periods 1 through t− 1,

νt(a
L) > νt(a

M) if st = r; νt(a
R) > νt(a

M) if st = ℓ. (24)

Now, Proposition 3.2 follows as a corollary of Lemma 6.6: note that since all voters

employ a SFSA of the form FA3(αR, βR, αL, βL), voters do not change their actions

when seeing an m-signal. Thus, by the inequalities (24), once one extreme signal is

realized, moderation never gains plurality. We next prove Proposition 4.1.

Proof of Proposition 4.1.

Proof. First, an equilibrium as defined in Definition 4.1 exists (Lemma A.2 in the

Appendix). Because parties’ chosen platforms aP1
t and aP2

t in period t have no effect

over the sequence of signals in periods after t, nor on voters’ voting behavior in any

subsequent period, taking the voters’ behavior as given, and normalizing each party’s

period payoff from winning with probability 0.5 to zero, parties P 1 and P 2 face an

infinite sequence of two-player, symmetric zero-sum one-period games. In any equilib-

rium of such an infinite horizon two-player zero-sum game, each party must obtain a

zero period-payoff in each period, obtained by playing an equilibrium of the one-period

game. We solve for the equilibrium of this two-player symmetric zero-sum one-period

game.

Let T ∈ N denote the first period in which st ∈ {ℓ, r} (if the entire infinite sequence

of public signals consists of m signals, then let T = ∞, but this occurs with probability

zero). For any t ∈ N, let π(s1, s2, ..., st−1) denote the posterior about the state of

Nature given the sequence of signals (s1, s2, ..., st−1), according to Bayes rule. Consider
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aP1
t \aP2

t aL aM aR

aL (1
2
, 1
2
) (1, 0) (z1, 1− z1)

aM (0, 1) (1
2
, 1
2
) (z2, 1− z2)

aR (1− z1, z1) (1− z2, z2) (1
2
, 1
2
)

,

Table 4: Period-t game probability of winning matrix.

any period t > T such that (without loss of generality),

νt−1(a
L) ≥ νt−1(a

R). (25)

Consider two cases.

Case 1. The most recent extreme signal is an r signal. By Lemma 6.6, νt−1(a
M) <

νt−1(a
L). We consider three subcases. (a) If st = ℓ, then νt(a

M) < νt(a
R) ≤ νt−1(a

R) ≤
νt−1(a

L) ≤ νt(a
L), where the first inequality is by Lemma 6.6, the second because st = ℓ,

the third by Assumption (25), and the fourth because st = ℓ. So νt(a
M) < νt(a

L). (b)

If st = m, then νt(a
M) = νt−1(a

M), νt(a
L) = νt−1(a

L), where the last inequality follows

from the two equalities and νt−1(a
M) < νt−1(a

L). So νt(a
M) < νt(a

L). (c) If st = r,

then νt(a
M) < νt(a

L) follows directly from Lemma 6.6. Together, we find that for any

signal realization st, νt(a
M) < νt(a

L).

We next construct the partial matrix of parties’ probabilities of winning (Table 4)

in the two-player one-period electoral competition game in period t, for some z1 ∈ (0, 1]

and z2 ∈ [0, 1) that are left undetermined. Note that along the diagonal probabilities

of winning are equal because the equilibrium is neutral. Since, subject to observing

signal st = ℓ, νt(a
M) < νt(a

R) ≤ νt(a
L), while following any signal νt(a

M) < νt(a
L),

and since according to posterior π, the probability that st = ℓ is strictly positive, it

follows that z1 > z2, which implies that aM is strictly dominated and in equilibrium

parties choose only extreme platforms.

Case 2. The most recent extreme signal is an l-signal. Then, by Lemma 6.6, νt−1(a
M) <

νt−1(a
R). We have three subcases. (a) If st = ℓ, then νt(a

M) < νt(a
R) ≤ νt−1(a

R) ≤
νt−1(a

L) ≤ νt(a
L), where the first inequality is by Lemma 6.6 the second because st = ℓ,

the third by Assumption (25), and the fourth because st = ℓ. So νt(a
M) < νt(a

L). (b)

If st = m, then νt(a
M) = νt−1(a

M) < νt−1(a
R) ≤ νt−1(a

L) = νt(a
L), so νt(a

M) < νt(a
L).
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(c) If st = r, then νt(a
M) < νt(a

L) follows from Lemma 6.6.

Together, we find that for any signal realization st, νt(a
M) < νt(a

L). The resulting

matrix of probabilities of winning is again Table 4, as in Case 1, and the argument

thus proceeds identically as in Case 1 to conclude that aM is strictly dominated and

thus both parties choose extreme platforms.
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